Input/Output Check Bugs Taxonomy:
Injection Errors in Spotlight

Irena Bojanova
SSD, ITL
NIST
Gaithersburg, MD, USA
irena.bojanova@nist.gov

Abstract—In this work, we present an orthogonal clas-
sification of input/output check bugs, allowing precise struc-
tured descriptions of related software vulnerabilities. We utilize
the Bugs Framework (BF) approach to define two language-
independent classes that cover all possible kinds of data check
bugs. We also identify all types of injection errors, as they are
always directly caused by input/output data validation bugs.
In BF each class is a taxonomic category of a weakness type
defined by sets of operations, cause—consequence relations,
and attributes. A BF description of a bug or a weakness is
an instance of a taxonomic BF class with one operation, one
cause, one consequence, and their attributes. Any vulnerability
then can be described as a chain of such instances and their
consequence—cause transitions. With our newly developed Data
Validation Bugs and Data Verification Bugs classes, we confirm
that BF is a classification system that extends the Common
Weakness Enumeration (CWE). It allows clear communication
about software bugs and weaknesses, providing a structured
way to precisely describe real-world vulnerabilities.

Keywords—Bug classification, bug taxonomy, software vul-
nerability, software weakness, input validation, input sanitiza-
tion, input verification, injection.

I. INTRODUCTION

The most dangerous software errors that open the doors
for cyberattacks are injection and buffer overflow, as analyzed
by frequency and severity in [1] and [2]. Injection is directly
caused by improper input/output data validation [3]. Buffer
overflow may be a consequence of improper input/output data
verification [4]. Classifying all input/output data check bugs
and defining the types of injection errors would allow precise
communication and help us teach about them, understand and
identify them, and avoid related security failures.

The Common Weakness Enumeration (CWE) [5] and the
Common Vulnerabilities and Exposures (CVE) [6] are well-
known and used lists of software security weaknesses and
vulnerabilities. However, they have problems. CWE’s exhaus-
tive list approach leads to gaps and overlaps in coverage, as
demonstrated by the National Vulnerability Database (NVD)
effort to link CVEs to appropriate CWEs [7]. Many CWEs
and CVEs have imprecise and unstructured descriptions. For
example, CWE-502 is imprecise as it is not clear what
“sufficiently” and “verifying that data is valid” mean. Due
to the unstructured description of CVE-2018-5907, NVD has

Disclaimer: Certain trade names and company products are mentioned in the
text or identified. In no case does such identification imply recommendation
or endorsement by the National Institute of Standards and Technology
(NIST), nor that they are necessarily the best available for the purpose.

Carlos Eduardo Galhardo
Dimel, Sinst

INMETRO RIT

Duque de Caxias, RJ, Brazil

cegalhardo@inmetro.gov.br

Sara Moshtari
GCCIS, GCI

Rochester, NY, USA
sm2481 @rit.edu

changed the assigned CWEs over time, and currently maps
CWE-190, while the cause is CWE-20 and the full chain
is CWE-20-CWE-190-CWE-119 - lack of input verification
leads to integer overflow and then to buffer overflow.

The Bugs Framework (BF) [8] builds on these com-
monly used lists of software weaknesses and vulnerabilities,
while addressing the problems that they have. It is being de-
veloped as a structured, complete, orthogonal, and language-
independent classification of software bugs and weaknesses.
Structured means a weakness is described via one cause,
one operation, one consequence, and one value per attribute
from the lists defining a BF class. This ensures precise
causal descriptions. Complete means BF has the expressive-
ness power to describe any software bug or weakness. This
ensures there are no gaps in coverage. Orthogonal means the
sets of operations of any two BF classes do not overlap.
This ensures there are no overlaps in coverage. BF is also
applicable for source code in any programming language.
The cause—consequence relation is a key aspect of BF’s
methodology that sets it apart from any other efforts. It
allows describing and chaining the bug and the weaknesses
underlining a vulnerability, as well as identifying a bug from
a final error and what is required to fix the bug.

We utilize the BF approach to define two language-
independent, orthogonal classes that cover all possible kinds
of data check bugs and weaknesses: Data Validation Bugs
(DVL) and Data Verification Bugs (DVR). The BF Data
Check Bugs taxonomy can be viewed as a structured ex-
tension to the input, output, and injection-related CWEs, al-
lowing bug reporting tools to produce more detailed, precise,
and unambiguous descriptions of identified data validation
and data verification bugs.

The main contributions of this work are: i) we create a
model of data check bugs; ii) we create a taxonomy that has
the expressiveness power to clearly describe any data check
bugs or weaknesses; iii) we confirm our taxonomy covers the
corresponding input/output CWEs; iv) we showcase the use
of our input/output check bugs taxonomy.

We achieve these contributions respectfully via: i) iden-
tifying the operations, where data validation and data verifi-
cation bugs could happen; ii) developing two new structured,
orthogonal BF classes: DVL and DVR, while also defining
five types of injection errors; iii) generating digraphs of
CWEs related to input/output validation weaknesses, as well
as to injection errors, and mapping these CWEs to BF DVL
and BF DRV by operation and by consequence; iv) describing
real-world vulnerabilities using BF DVL and BF DVR: CVE-
2020-5902 BIG-IP F5, CVE-2019-10748 Sequelize SQL In-

https://cwe.mitre.org/data/definitions/502.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-5907
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/119.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5902
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5902
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-10748

jection, and the DVR bug in CVE-2014-0160 Heartbleed.

The rest of the paper is organized as follows: In
Section II, we recall BF’s approach and methodology. In
Section III, we analyze the types of data check bugs and
define the BF Data Check Bugs model. In Section IV, we
present our new BF DVL and BF DVR classes. In Section V,
we analyze the correspondence of the input, output, and
injection-related CWEs to the new BF classes. In Section VI,
we use the BF Data Check Bugs taxonomy to provide better,
structured descriptions of real-world vulnerabilities (CVE
entries [6]). Finally, in Section VII we discuss related works
and in Section VIII we summarize the paper contributions
and we propose future works.

II. BF APPROACH AND METHODOLOGY

We use the terms software bug, weakness, and vulnera-
bility as they are defined by Bojanova and Galhardo at [8]. We
utilize the latest BF approach and methodology, as described
in [9] and reiterate the main ideas here for better content flow.

BF describes a bug or a weakness as an improper state
and its transition. The transition is to another weakness
or to a failure. An improper state is defined by the tuple
(operation, operand, -+, operand,) where at least
one element is improper. The initial state is always caused by
a bug — a coding error within the operation, which, if fixed,
will resolve the vulnerability. An intermediate state is caused
by ill-formed data; it has at least one improper operand. The
final state, the failure, is caused by a final error (undefined
or exploitable system behavior) that usually directly relates
to a CWE. A transition is the result of the operation over the
operands.

BF describes a vulnerability as a chain of improper
states and their transitions. Each improper state is an instance
of a BF class. The transition from the initial state is by
improper operation over proper operands. The transitions
from intermediate states are by proper operations with at least
one improper operand.

Operations or operands improperness defines the causes.
A consequence is the result of an operation over its operands.
It becomes a final error or the cause for a next weakness.

A BF class is a taxonomic category of a weakness type,
defined by a set of operations, all valid cause—consequence
relations, and a set of attributes. The taxonomy of a particular
bug or weakness is based on one BF class. Its description is
an instance of a taxonomic BF class with one cause, one
operation, one consequence, and their attributes. The oper-
ation binds the cause—consequence relation — e.g., under-
restrictive sanitization policy leads to a final error known as
SQL (Structured Query Language) injection.

CWEs coverage by any newly developed BF classes
can be visualized via digraphs, based on CWEs parent-
child relationships. Once analyzed, these digraphs can help
understand CWEs structure and how they translate to BF.

The taxonomies of newly developed BF classes can
be demonstrated by providing structured BF descriptions of
appropriate CVEs.

The methodology for developing a BF class comprises
identifying/defining: (1) the phase specific for a kind of bugs;
(2) the operations for that phase; (3) the BF Bugs model
with operations flow; (4) all causes; (5) all consequences that
propagate as a cause to a next weakness; (6) all consequences

that are final errors; (7) attributes useful to describe such
a bug/weakness; (8) the possible sites in code; (9) CWE
digraphs by class and consequence; (10) CVE test cases.

III. DATA CHECK BUGS MODEL

Data should be checked to ensure proper results from its
processing. It should adhere to object data types acceptable by
the software. In [9], Bojanova and Galhardo, define an object
as a piece of memory with well-defined size that is used to
store primitive data or a data structure. As input, primitive
data are checked and sanitized on string-of-characters level.
A character — e.g., an ASCII (American Standard Code for
Information Interchange) character — is a single symbol, such
as an alphabet letter, a numeric digit, or a punctuation mark.
Data structures in turn are built on primitive data but can also
have a higher level of syntax and semantics rules.

Data check comprises data validation, where data syntax
gets checked for being well-formed, and data verification,
where data semantics gets verified for being accurate. The
BF model separates data semantics check as data verification,
although OWASP (Open Web Application Security Project)
puts it under input validation [10].

Validation is about accepting or rejecting data based
on its syntax: it checks if data are in proper format (gram-
mar). For example, checking if data consist of digits only
or checking the syntax of an XML (Extensible Markup
Language) document against a DTD (XML Document Type
Definition) is data validation. Once data syntax is checked it
may be sanitized. Sanitization is about neutralizing, filtering,
or repairing data via escaping, removing, or adding symbols
in data, correspondingly. An example of data sanitization
would be removing a special character such as ’/’ or adding
a closing parenthesis ’)’. The validate and sanitize opera-
tions use specific policies, such as to check against safelist,
denylist, format (e.g., defined via regular expressions), or
length. A safelist defines a set of known good content. A
denylist defines a set of known bad content; it helps reject
outright maliciously malformed data. Regular expressions
define format patterns that data (viewed as strings) should
match. They could be used for safelists and denylists.

Verification is about accepting or rejecting data based on
its semantics: it checks if data have proper value (meaning).
For example, checking if a start date is before an end date, or
checking the type of an XML document against a PowerPoint
XSD (XML Schema Definition) is data verification. Once
data semantics is checked, it may be corrected via assigning
a new value or via removing data. An example of data
correction would be setting the size to the buffer’s upper
bound when the size that is supplied is larger than that upper
bound. The verify and correct operations use specific policies
to, for example, check data against a value (incl. NULL or
list of values), quantity, range, type, or other business rules.

Data check bugs could be introduced at any of the data
validation and data verification phases. Each bug or weakness
involves one data check operation: validate, sanitize, verify,
or correct. Each operation is over already-canonicalized' data
and the policy (the rules) against which it gets checked.

ICanonicalization [11] operations, such as decrypt, cryptographic verify,
decompress, or decode into format appropriate for the software, are per-
formed before input check; the opposite operations are performed after output
check. All these operations are not part of the BF Data Check Bugs classes.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160

The BF Data Check Bugs model (Fig. 1) helped us
identify the phases and the operations where such bugs could
occur. The phases correspond to the BF Data Check Bugs
classes: Data Validation Bugs (DVL) and Data Verification
Bugs (DVR). All data check operations are grouped by phase.

Unchecked
Data

Checked
Data

Data
Lifetime

Fig. 1: The BF Data Check Bugs model. Comprises phases,
corresponding to the BF classes DVL and DVR. Shows the
data check operations flow.

The operations under DVL (Fig. 1) are on checking
data syntax: Validate and Sanitize. See definitions of DVL
operations in Table Ia. The operations under DVR (Fig. 1)
are on checking data semantics: Verify and Correct. See
definitions of DVR operations in Table Ib.

The possible flow between operations from different
phases is depicted on Fig. 1 with arrows. Data could be
validated and verified or only directly verified. The pre-
sented operations flow helps in identifying possible chains
of bugs/weaknesses.

IV. BF DATA CHECK BUGS CLASSES

We define the BF Data Check Bugs classes as follows:

o Data Validation Bugs (DVL) — Data are validated (syntax
check) or sanitized (escape, filter, repair) improperly.

o Data Verification Bugs (DVR) — Data are verified (seman-
tics check) or corrected (assign value, remove) improperly.

Each of these classes represents a phase, aligned with the
Data Check Bugs model (Fig. 1), and is comprised of sets
of operations, cause—consequence relations, and attributes,
allowing precise causal descriptions of data validation and
data verification bugs/weaknesses.

Fig. 2 and Fig. 3 show the specific sets for data validation
and data verification bugs, respectively. Only the values listed
on the corresponding figure should be used to describe that
kind of bugs or weaknesses.

A. Operations

All BF classes are being designed to be orthogonal;
their sets of operations should not overlap. The operations
in which data check bugs could happen correspond to the
operations in the BF Data Check Bugs model (Fig. 1) —as a
reminder, the definitions are in Table I. The DVL operations
are Validate and Sanitize. They reflect the improper check and
modification of data syntax. The DVR operations are Verify
and Correct. They reflect the improper check and modification
of data semantics.

Causes DVL Operations Consequences
Improper Operation: * Validate P Improper Dat.a
o - ‘or next operation:
* Missing * Sanitize * Invalid Data
* Erroneous A J
* Under-Restrictive Policy
* Over-Restrictive Policy (Injection Error: \
) * Query Injection
* Command Injection
" Improper Data h * Source Code Injection
(from previous operation): * Parameter Injection
¢ Corrupted Data _* File Injection)
\' Tampered Data)
Improper Policy (as data
from previous operation):
* Corrupted Policy
\ Tampered Policy
Attributes
Operation Data
Mechanism: | Source Code: Execution Space: | State:
 Safelist ¢ Codebase * Local * Entered
* Denylist * Third Party * Admin * Stored
* Format * Standard Library * Bare-Metal * InUse
* Length * Processor * Transferred

Fig. 2: The Data Validation (DVL) class.

Causes DVR Operations Consequences

Improper Data
for next operation:
* Wrong Value
* Inconsistent Value
* Wrong Type

* Verify
¢ Correct

Improper Operation:
* Missing
¢ Erroneous
¢ Under-Restrictive Policy
* Over-Restrictive Policy

J

-
Improper Data

(from previous operation):
* Invalid Data
N

Attributes

Operation Data
Mechanism: Source Code: Execution Space: | State:
* Value * Codebase * Local * Entered
* Quantity * Third Party * Admin * Stored
* Range Standard Library * Bare-Metal * InUse
* Type * Processor * Transferred
* Other Rules

Fig. 3: The Data Verification (DVR) class.

B. Causes

A cause is either an improper operation or an improper
operand. If a BF class instance is the first in a chain
describing a vulnerability, it is always caused by an improper
operation. The values for improper data check operations
are Missing, Erroneous, Under-Restrictive Policy, and Over-
Restrictive Policy. See definitions and examples in Table II.

The operands of a data check operation are data and
policy. See definitions in Table III. An improper operand is
data or policy that has been modified by an operation of a
previous weakness, such as decode, decrypt, and convert [8].

All values for an improper operand of a data check
operation are defined in Table IV. Improper Policy as data
from a previous weakness is a possible cause only for DVL.
Improper Data could be of a primitive data type (e.g., a string,
a number) or a data structure. Comments could be used to
provide more details such as data type and variable name.

TABLE I: Operations
(a) DVL (Data Validation)

TABLE IV: Improper Operands — as DVL/DVR Causes

(a) Improper Data (from previous operation) — as DVL Cause

Operation Definition

Value

Validate Check data syntax (proper form/grammar) in order to accept
(and possibly sanitize) or reject it. Includes checking for
missing symbols/elements.

Sanitize Modify data (neutralize/escape, filter/remove, repair/add

symbols) in order to make it valid (well-formed).

Value Definition
Corrupted Unintentionally modified data due to a previous weakness
Data (e.g., with a decompress or a decrypt operation) that if not

sanitized would end-up as invalid data for next weakness.
Tampered Maliciously modified data due to a previous weakness (e.g.,
Data with a deserialize, authorize, or crypto verify operation) that
would lead to injection error.

(b) DVR (Data Verification)

(b) Improper Data (from previous operation) — as DVR Cause

Operation Definition

Value

Verify Check data semantics (proper value/meaning) in order to
accept (and possibly correct) or reject it.

Correct Modify data (assign new value, remove), in order to make
it accurate.

TABLE II: Improper Operations
Value Definition Example
Missing The operation is absent. ~ Missing data sanitization.

Erroncous There’s abuginthe op- o Using not equal to (!=) when
eration implementation comparing to safelist values.
(1n91. how I checks o Using greater than (>) when
against a policy). checking for upper range.

Under- Accepts bad data. o Permissive safelist or regular
Restrictive expression.

Policy o Incomplete denylist.

Over- Rejects good data. Over-restrictive denylist or regu-
Restrictive lar expression.

Policy

C. Consequences

A consequence is either a final error or a wrong result
from the operation that propagates as an improper operand
for a next weakness.

Improper validation or sanitization may directly lead to
final injection errors. Any other improper data check in any
of the phases (Fig. 1) would lead to improper data for an
operation in a next weakness.

Improper Data is the only possible improper operand as
a consequence from DVL or DVR. All its possible values
are defined in Table V. As a consequence, improper data
would become a cause for an operation of a next weakness.
These consequence—cause transitions explain why Invalid
Data appears in both Table IV and Table V.

The only kind of DVR consequences (Table Vb) is
improper operand for next weakness. This means a DVR bug
or weakness is always followed by another weakness or a
chain of weaknesses leading to a final error such as buffer
overflow or memory overflow.

All DVL final errors are injection errors. We also identify
and define in Table VI five types of injection errors: query in-
jection, command injection, source code injection, parameter
injection, and file injection. All of them, except some source

TABLE III: Operands

Concept Definition

Data A string of characters (symbols like letter, digit, punctuation)
with clearly defined syntax and semantics.

Lists or rules for checking data syntax and semantics. For
example, safelist, denylist, format (e.g., DTD-XML Document
Type Definition), and length; or value (incl. NULL or list of
values), quantity, range, and type (e.g., a PowerPoint XSD).

Policy

Value Definition
Invalid Data with harmed syntax due to sanitization errors.
Data

(c) Improper Policy (from previous operation) — as DVL Cause

Value Definition
Corrupted Unintentionally modified policy due to a previous weakness

Policy (e.g., with a decompress operation).
Tampered Maliciously modified policy due to a previous weakness
Policy (e.g., with an authorize operation).

TABLE V: Improper Operands — as DVL/DVR Consequences
(a) Improper Data for Next Operation — as DVL/DVR Consequence

Value Definition
Invalid Data with harmed syntax due to sanitization errors.
Data

(b) Improper Data for Next Operation — as DVR Consequence

Value Definition

Wrong Data with harmed semantics; not accurate value (e.g.,
Value outside of a range).

Inconsistent Data value is inconsistent with the value of a related data
Value (e.g., inconstancy between the value of a size variable and

the actual buffer size).
Data with wrong data type.

Wrong
Type

code injections, are due to data with missing, additional, or
inconsistent special elements (symbols that can be interpreted
as control elements or syntactic markers). The BF model
separates query injection and command injection from source
code injection, although they are commonly discussed under
the umbrella term “code injection” (e.g., [3], [4], [12]). All
the possible types of data check errors that end in failure
right after the current bug/weakness (as an instance of a BF
class) are DVL final errors, representing the types of injection
erTors.

All possible consequences for data check bugs are de-
fined in Table V and Table VI. However, refer Fig. 2 and
Fig. 3 for consequences applicable to each class.

D. Attributes

An attribute provides additional useful information about
the operation or its operands. All possible attributes for data
check bugs are defined in Table VII. The operation attributes
Source Code and Execution Space explain where a bug is
— where the operation is in the program and where its code
runs. The data attribute State explains where the data come
from. See definitions of these attributes’ values in Table VIla.

Both DVL and DVR also have the operation attribute
Mechanism but with different possible values that are specific

TABLE VI: Injection Errors — as DVL Consequences

Value Definition Example
Query Malicious insertion of SQL Injection
Injection condition parts (e.g.,

No SQL Injection
XPath Injection
XQuery Injection
LDAP Injection

or 1==1) or entire
commands (e.g., drop
table) into an input
used to construct a
database query.
Command Malicious insertion of

e OS Command Injection

Injection new tctommands 1nt5> Lhet o Regular Expression Injection
P atg‘”:;“agpetm? o IMAP/SMTP Command
. A Injection
ing system (OS) or to a e Object Injection (JSON
Server. server side)
g‘;‘gse nMe:iles;e HZislfglonwi(t)tf o Cross Site Scripting (XSS)
) CSS Injecti
Injection <> elements) into input : Eval Iﬁ}iitigg
used as part of an exe- « EL Injection
cuting application code. e JSON Injection (Client or
Server Side)
Parameter Malicious insertion of « Argument Injection
Injecti dat: .g., with & pa- . L
jection r:n?etg: gsepg?ator) iE?o e Format String Injection
. o Email Injection
mpl;t used as para;n " o HTTP Header Injection (incl.
efer argfumc(:int - other Server Header Injection)
parts of code. o Reflection Injection
o Flash Injection
e CRLF Injection (incl. HTTP
Header Splitting)
File Malicious insertion of CSV, Temp, ctc. File Injec-
Injection data (e.g., with .. and tion’ ’ :

/ or with file entries)
into input used to ac-
cess/modify files or as
file content.

e Log Entry Injection

o XML Injection

o CRLF Injection (incl. in as in
log entry files)

o Relative Path Traversal

o Absolute Path Traversal

to the policies the operations could use to check data.
See definitions of this attribute values in Table VIIb and
Table Vllc.

E. Sites

A site for input/output check bugs is any part of the
code that should check and sanitize data syntax or check and
correct data semantics.

V. BF DATA CHECK BUGS TAXONOMY AS
CWE EXTENSION

In this section, we analyze the correspondence of the
input, output, and injection-related CWEs [5] to the two new
BF DVL and DVR classes. We show that the BF classes
cover all related CWEs, and potentially beyond, while (as
demonstrated later in Section VI) providing a better structured
way for describing these kinds of bugs/weaknesses.

The BF classes ensure precise causal descriptions, as a
weakness is described via one cause, one operation, and one
consequence, while the CWEs only enumerate weaknesses.
The CWEs exhaustive list approach is prone to gaps in
coverage: some weakness types may be missing. The CWEs
also have overlaps in coverage, including via over detailing
(e.g., CWE-23 children’s path traversal variations). While by
their nature, the BF classes are complete and orthogonal,
assuring no gaps and no overlaps in coverage. We map a CWE

TABLE VII: Attributes
(a) DVL and DVR Attributes

Name Value Definition

Codebase The operation is in the programmer’s code — in

(5] . . .

B the application itself.

) Third Party The operation is in a third-party library.

“é Standard The operation is in the standard library for a

2 Library particular programming language.

@ Language The operation is in the tool that allows execu-

Processor tion or creates executables (compiler, assembler,
interpreter).

° Local The bugged code runs in an environment with

2 access control policy with limited (local user)

& permission.

g Admin The bugged code runs in an environment with

=i access control policy with unlimited (admin

3 user) permission.

i Bare-Metal The bugged code runs in an environment without
privilege control. Usually, the program is the
only software running and has total access to
the hardware.

° Entered Data comes from user interface (e.g., text field).

S Stored Data comes from permanent storage (e.g., file,

« database on a storage device).

In Use Data comes from volatile storage (e.g., RAM,
cache memory).

Transferred Data comes via network (e.g., connecting analog
device or another computer).

(b) DVL Attribute

Name Value Definition

g Safelist Policy based on a set of known good content.

&= Denylist Policy based on a set of known bad con-

= tent; helps reject outright maliciously malformed

ot data.

= Format Policy based on syntax format (e.g., defined via
regular expression).

Length Policy based on allowed number of characters in
data. Note that this is not about the data value
as size of an object.

(c) DVR Attribute

Name Value Definition

g Value Check data for a specific value (incl. NULL or

A list of values).

= Quantity Check data for a specific measurable value (e.g.,

8 size, time, rate, frequency).

= Range Check data are within a (min, max) interval.

Type Check data type (e.g., int, float, XSD-XML
Schema Definition, or specific structure/object).
Check data against other business logic.

Other Rules

to a BF class by an operation and/or a consequence from
the lists defining the BF class. Through these relationships,
the BF classes can be viewed as structured extensions to the
input, output, and injection-related CWEs.

The BF Data Check Bugs classes relate to particular
CWESs by BF DVL and DVR operations and/or consequences.
We generated a digraph of all input- and output-check-related
CWEs, including the injection-related CWEs, to show this
correspondence both by operation (Fig. 4) and by conse-
quence (Fig. 5). In the digraph, an edge starts at a parent
CWE and ends at a child CWE. The outline style of a CWE
node indicates the CWE level of abstraction: pillar, class,
base, or variant.

Almost all of the 162 CWE:s, visualized on the digraph,
can be tracked as descendants of the pillar CWE-707; excep-

https://cwe.mitre.org/data/definitions/23.html
https://cwe.mitre.org/data/definitions/707.html

1286:

/

(73"
i

il

1 20

CWE by DVL and/orDVR operation: CWE bylInput and/orOutput: CWE by Abstraction:
O DVL Validate Input @ Pillar
O DVL Sanitize Output -:" Class

O DVR Verify Input and Output i (Base

O DVL Validate and DVR Verify Q Variant
Compound

Fig. 4: A digraph of the input- and output-check-related CWEs (including injection-related CWEs), mapped by BF DVL and
BF DVR operations. Each node represents a CWE by its identifier (ID). Each arrow represent a parent-child relationship.
— Click on an ID to open the CWE entry.

https://cwe.mitre.org/data/definitions/707.html
https://cwe.mitre.org/data/definitions/114.html
https://cwe.mitre.org/data/definitions/116.html
https://cwe.mitre.org/data/definitions/138.html
https://cwe.mitre.org/data/definitions/159.html
https://cwe.mitre.org/data/definitions/185.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/228.html
https://cwe.mitre.org/data/definitions/74.html
https://cwe.mitre.org/data/definitions/75.html
https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/790.html
https://cwe.mitre.org/data/definitions/913.html
https://cwe.mitre.org/data/definitions/943.html
https://cwe.mitre.org/data/definitions/99.html
https://cwe.mitre.org/data/definitions/112.html
https://cwe.mitre.org/data/definitions/117.html
https://cwe.mitre.org/data/definitions/1173.html
https://cwe.mitre.org/data/definitions/1236.html
https://cwe.mitre.org/data/definitions/1284.html
https://cwe.mitre.org/data/definitions/1285.html
https://cwe.mitre.org/data/definitions/1286.html
https://cwe.mitre.org/data/definitions/1287.html
https://cwe.mitre.org/data/definitions/1288.html
https://cwe.mitre.org/data/definitions/1289.html
https://cwe.mitre.org/data/definitions/130.html
https://cwe.mitre.org/data/definitions/1336.html
https://cwe.mitre.org/data/definitions/134.html
https://cwe.mitre.org/data/definitions/140.html
https://cwe.mitre.org/data/definitions/15.html
https://cwe.mitre.org/data/definitions/166.html
https://cwe.mitre.org/data/definitions/167.html
https://cwe.mitre.org/data/definitions/168.html
https://cwe.mitre.org/data/definitions/170.html
https://cwe.mitre.org/data/definitions/183.html
https://cwe.mitre.org/data/definitions/184.html
https://cwe.mitre.org/data/definitions/186.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/229.html
https://cwe.mitre.org/data/definitions/23.html
https://cwe.mitre.org/data/definitions/233.html
https://cwe.mitre.org/data/definitions/237.html
https://cwe.mitre.org/data/definitions/240.html
https://cwe.mitre.org/data/definitions/36.html
https://cwe.mitre.org/data/definitions/41.html
https://cwe.mitre.org/data/definitions/428.html
https://cwe.mitre.org/data/definitions/472.html
https://cwe.mitre.org/data/definitions/565.html
https://cwe.mitre.org/data/definitions/606.html
https://cwe.mitre.org/data/definitions/624.html
https://cwe.mitre.org/data/definitions/625.html
https://cwe.mitre.org/data/definitions/641.html
https://cwe.mitre.org/data/definitions/643.html
https://cwe.mitre.org/data/definitions/652.html
https://cwe.mitre.org/data/definitions/73.html
https://cwe.mitre.org/data/definitions/76.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/791.html
https://cwe.mitre.org/data/definitions/795.html
https://cwe.mitre.org/data/definitions/88.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/90.html
https://cwe.mitre.org/data/definitions/91.html
https://cwe.mitre.org/data/definitions/914.html
https://cwe.mitre.org/data/definitions/917.html
https://cwe.mitre.org/data/definitions/93.html
https://cwe.mitre.org/data/definitions/94.html
https://cwe.mitre.org/data/definitions/96.html
https://cwe.mitre.org/data/definitions/102.html
https://cwe.mitre.org/data/definitions/105.html
https://cwe.mitre.org/data/definitions/106.html
https://cwe.mitre.org/data/definitions/108.html
https://cwe.mitre.org/data/definitions/109.html
https://cwe.mitre.org/data/definitions/113.html
https://cwe.mitre.org/data/definitions/1174.html
https://cwe.mitre.org/data/definitions/129.html
https://cwe.mitre.org/data/definitions/141.html
https://cwe.mitre.org/data/definitions/142.html
https://cwe.mitre.org/data/definitions/143.html
https://cwe.mitre.org/data/definitions/144.html
https://cwe.mitre.org/data/definitions/145.html
https://cwe.mitre.org/data/definitions/146.html
https://cwe.mitre.org/data/definitions/147.html
https://cwe.mitre.org/data/definitions/148.html
https://cwe.mitre.org/data/definitions/149.html
https://cwe.mitre.org/data/definitions/150.html
https://cwe.mitre.org/data/definitions/151.html
https://cwe.mitre.org/data/definitions/152.html
https://cwe.mitre.org/data/definitions/153.html
https://cwe.mitre.org/data/definitions/154.html
https://cwe.mitre.org/data/definitions/155.html
https://cwe.mitre.org/data/definitions/156.html
https://cwe.mitre.org/data/definitions/157.html
https://cwe.mitre.org/data/definitions/158.html
https://cwe.mitre.org/data/definitions/160.html
https://cwe.mitre.org/data/definitions/161.html
https://cwe.mitre.org/data/definitions/162.html
https://cwe.mitre.org/data/definitions/163.html
https://cwe.mitre.org/data/definitions/164.html
https://cwe.mitre.org/data/definitions/165.html
https://cwe.mitre.org/data/definitions/230.html
https://cwe.mitre.org/data/definitions/231.html
https://cwe.mitre.org/data/definitions/232.html
https://cwe.mitre.org/data/definitions/234.html
https://cwe.mitre.org/data/definitions/235.html
https://cwe.mitre.org/data/definitions/236.html
https://cwe.mitre.org/data/definitions/238.html
https://cwe.mitre.org/data/definitions/239.html
https://cwe.mitre.org/data/definitions/24.html
https://cwe.mitre.org/data/definitions/25.html
https://cwe.mitre.org/data/definitions/26.html
https://cwe.mitre.org/data/definitions/27.html
https://cwe.mitre.org/data/definitions/28.html
https://cwe.mitre.org/data/definitions/29.html
https://cwe.mitre.org/data/definitions/30.html
https://cwe.mitre.org/data/definitions/31.html
https://cwe.mitre.org/data/definitions/32.html
https://cwe.mitre.org/data/definitions/33.html
https://cwe.mitre.org/data/definitions/34.html
https://cwe.mitre.org/data/definitions/35.html
https://cwe.mitre.org/data/definitions/37.html
https://cwe.mitre.org/data/definitions/38.html
https://cwe.mitre.org/data/definitions/39.html
https://cwe.mitre.org/data/definitions/40.html
https://cwe.mitre.org/data/definitions/42.html
https://cwe.mitre.org/data/definitions/43.html
https://cwe.mitre.org/data/definitions/44.html
https://cwe.mitre.org/data/definitions/45.html
https://cwe.mitre.org/data/definitions/46.html
https://cwe.mitre.org/data/definitions/47.html
https://cwe.mitre.org/data/definitions/48.html
https://cwe.mitre.org/data/definitions/49.html
https://cwe.mitre.org/data/definitions/50.html
https://cwe.mitre.org/data/definitions/51.html
https://cwe.mitre.org/data/definitions/52.html
https://cwe.mitre.org/data/definitions/53.html
https://cwe.mitre.org/data/definitions/54.html
https://cwe.mitre.org/data/definitions/55.html
https://cwe.mitre.org/data/definitions/554.html
https://cwe.mitre.org/data/definitions/56.html
https://cwe.mitre.org/data/definitions/564.html
https://cwe.mitre.org/data/definitions/57.html
https://cwe.mitre.org/data/definitions/58.html
https://cwe.mitre.org/data/definitions/622.html
https://cwe.mitre.org/data/definitions/626.html
https://cwe.mitre.org/data/definitions/644.html
https://cwe.mitre.org/data/definitions/781.html
https://cwe.mitre.org/data/definitions/796.html
https://cwe.mitre.org/data/definitions/797.html
https://cwe.mitre.org/data/definitions/80.html
https://cwe.mitre.org/data/definitions/81.html
https://cwe.mitre.org/data/definitions/82.html
https://cwe.mitre.org/data/definitions/83.html
https://cwe.mitre.org/data/definitions/84.html
https://cwe.mitre.org/data/definitions/85.html
https://cwe.mitre.org/data/definitions/86.html
https://cwe.mitre.org/data/definitions/87.html
https://cwe.mitre.org/data/definitions/95.html
https://cwe.mitre.org/data/definitions/97.html
https://cwe.mitre.org/data/definitions/98.html
https://cwe.mitre.org/data/definitions/692.html

30)(29
31 28
85 81 08 32 A\/L' 27 58 43
564 86 g0) 1336 50
33— 23 — /% >
53

CWE by DVL Injection Error: CWE by DVL orDVR Wrong Data for Next Operation Consequence: CWE by Abstraction:
Query Injection O DVL Invalid Data \//\u Pillar
_
Command Injection O DVR Wrong Value, Inconsistent Value, and Wrong Type (’ Class
Source Code Injection No consequence (only cause listed) Base
Parameter Injection O Variant
File Injection Q Compound

Fig. 5: A digraph of the input- and output-check-related CWEs (including the injection-related CWEs), mapped by BF DVL and
BF DVR consequences. Each node represents a CWE by its identifier (ID). Each arrow represent a parent-child relationship.
— Click on an ID to open the CWE entry.

https://cwe.mitre.org/data/definitions/707.html
https://cwe.mitre.org/data/definitions/114.html
https://cwe.mitre.org/data/definitions/116.html
https://cwe.mitre.org/data/definitions/138.html
https://cwe.mitre.org/data/definitions/159.html
https://cwe.mitre.org/data/definitions/185.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/228.html
https://cwe.mitre.org/data/definitions/74.html
https://cwe.mitre.org/data/definitions/75.html
https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/790.html
https://cwe.mitre.org/data/definitions/913.html
https://cwe.mitre.org/data/definitions/943.html
https://cwe.mitre.org/data/definitions/99.html
https://cwe.mitre.org/data/definitions/112.html
https://cwe.mitre.org/data/definitions/117.html
https://cwe.mitre.org/data/definitions/1173.html
https://cwe.mitre.org/data/definitions/1236.html
https://cwe.mitre.org/data/definitions/1284.html
https://cwe.mitre.org/data/definitions/1285.html
https://cwe.mitre.org/data/definitions/1286.html
https://cwe.mitre.org/data/definitions/1287.html
https://cwe.mitre.org/data/definitions/1288.html
https://cwe.mitre.org/data/definitions/1289.html
https://cwe.mitre.org/data/definitions/130.html
https://cwe.mitre.org/data/definitions/1336.html
https://cwe.mitre.org/data/definitions/134.html
https://cwe.mitre.org/data/definitions/140.html
https://cwe.mitre.org/data/definitions/15.html
https://cwe.mitre.org/data/definitions/166.html
https://cwe.mitre.org/data/definitions/167.html
https://cwe.mitre.org/data/definitions/168.html
https://cwe.mitre.org/data/definitions/170.html
https://cwe.mitre.org/data/definitions/183.html
https://cwe.mitre.org/data/definitions/184.html
https://cwe.mitre.org/data/definitions/186.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/229.html
https://cwe.mitre.org/data/definitions/23.html
https://cwe.mitre.org/data/definitions/233.html
https://cwe.mitre.org/data/definitions/237.html
https://cwe.mitre.org/data/definitions/240.html
https://cwe.mitre.org/data/definitions/36.html
https://cwe.mitre.org/data/definitions/41.html
https://cwe.mitre.org/data/definitions/428.html
https://cwe.mitre.org/data/definitions/472.html
https://cwe.mitre.org/data/definitions/565.html
https://cwe.mitre.org/data/definitions/606.html
https://cwe.mitre.org/data/definitions/624.html
https://cwe.mitre.org/data/definitions/625.html
https://cwe.mitre.org/data/definitions/641.html
https://cwe.mitre.org/data/definitions/643.html
https://cwe.mitre.org/data/definitions/652.html
https://cwe.mitre.org/data/definitions/73.html
https://cwe.mitre.org/data/definitions/76.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/791.html
https://cwe.mitre.org/data/definitions/795.html
https://cwe.mitre.org/data/definitions/88.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/90.html
https://cwe.mitre.org/data/definitions/91.html
https://cwe.mitre.org/data/definitions/914.html
https://cwe.mitre.org/data/definitions/917.html
https://cwe.mitre.org/data/definitions/93.html
https://cwe.mitre.org/data/definitions/94.html
https://cwe.mitre.org/data/definitions/96.html
https://cwe.mitre.org/data/definitions/102.html
https://cwe.mitre.org/data/definitions/105.html
https://cwe.mitre.org/data/definitions/106.html
https://cwe.mitre.org/data/definitions/108.html
https://cwe.mitre.org/data/definitions/109.html
https://cwe.mitre.org/data/definitions/113.html
https://cwe.mitre.org/data/definitions/1174.html
https://cwe.mitre.org/data/definitions/129.html
https://cwe.mitre.org/data/definitions/141.html
https://cwe.mitre.org/data/definitions/142.html
https://cwe.mitre.org/data/definitions/143.html
https://cwe.mitre.org/data/definitions/144.html
https://cwe.mitre.org/data/definitions/145.html
https://cwe.mitre.org/data/definitions/146.html
https://cwe.mitre.org/data/definitions/147.html
https://cwe.mitre.org/data/definitions/148.html
https://cwe.mitre.org/data/definitions/149.html
https://cwe.mitre.org/data/definitions/150.html
https://cwe.mitre.org/data/definitions/151.html
https://cwe.mitre.org/data/definitions/152.html
https://cwe.mitre.org/data/definitions/153.html
https://cwe.mitre.org/data/definitions/154.html
https://cwe.mitre.org/data/definitions/155.html
https://cwe.mitre.org/data/definitions/156.html
https://cwe.mitre.org/data/definitions/157.html
https://cwe.mitre.org/data/definitions/158.html
https://cwe.mitre.org/data/definitions/160.html
https://cwe.mitre.org/data/definitions/161.html
https://cwe.mitre.org/data/definitions/162.html
https://cwe.mitre.org/data/definitions/163.html
https://cwe.mitre.org/data/definitions/164.html
https://cwe.mitre.org/data/definitions/165.html
https://cwe.mitre.org/data/definitions/230.html
https://cwe.mitre.org/data/definitions/231.html
https://cwe.mitre.org/data/definitions/232.html
https://cwe.mitre.org/data/definitions/234.html
https://cwe.mitre.org/data/definitions/235.html
https://cwe.mitre.org/data/definitions/236.html
https://cwe.mitre.org/data/definitions/238.html
https://cwe.mitre.org/data/definitions/239.html
https://cwe.mitre.org/data/definitions/24.html
https://cwe.mitre.org/data/definitions/25.html
https://cwe.mitre.org/data/definitions/26.html
https://cwe.mitre.org/data/definitions/27.html
https://cwe.mitre.org/data/definitions/28.html
https://cwe.mitre.org/data/definitions/29.html
https://cwe.mitre.org/data/definitions/30.html
https://cwe.mitre.org/data/definitions/31.html
https://cwe.mitre.org/data/definitions/32.html
https://cwe.mitre.org/data/definitions/33.html
https://cwe.mitre.org/data/definitions/34.html
https://cwe.mitre.org/data/definitions/35.html
https://cwe.mitre.org/data/definitions/37.html
https://cwe.mitre.org/data/definitions/38.html
https://cwe.mitre.org/data/definitions/39.html
https://cwe.mitre.org/data/definitions/40.html
https://cwe.mitre.org/data/definitions/42.html
https://cwe.mitre.org/data/definitions/43.html
https://cwe.mitre.org/data/definitions/44.html
https://cwe.mitre.org/data/definitions/45.html
https://cwe.mitre.org/data/definitions/46.html
https://cwe.mitre.org/data/definitions/47.html
https://cwe.mitre.org/data/definitions/48.html
https://cwe.mitre.org/data/definitions/49.html
https://cwe.mitre.org/data/definitions/50.html
https://cwe.mitre.org/data/definitions/51.html
https://cwe.mitre.org/data/definitions/52.html
https://cwe.mitre.org/data/definitions/53.html
https://cwe.mitre.org/data/definitions/54.html
https://cwe.mitre.org/data/definitions/55.html
https://cwe.mitre.org/data/definitions/554.html
https://cwe.mitre.org/data/definitions/56.html
https://cwe.mitre.org/data/definitions/564.html
https://cwe.mitre.org/data/definitions/57.html
https://cwe.mitre.org/data/definitions/58.html
https://cwe.mitre.org/data/definitions/622.html
https://cwe.mitre.org/data/definitions/626.html
https://cwe.mitre.org/data/definitions/644.html
https://cwe.mitre.org/data/definitions/781.html
https://cwe.mitre.org/data/definitions/796.html
https://cwe.mitre.org/data/definitions/797.html
https://cwe.mitre.org/data/definitions/80.html
https://cwe.mitre.org/data/definitions/81.html
https://cwe.mitre.org/data/definitions/82.html
https://cwe.mitre.org/data/definitions/83.html
https://cwe.mitre.org/data/definitions/84.html
https://cwe.mitre.org/data/definitions/85.html
https://cwe.mitre.org/data/definitions/86.html
https://cwe.mitre.org/data/definitions/87.html
https://cwe.mitre.org/data/definitions/95.html
https://cwe.mitre.org/data/definitions/97.html
https://cwe.mitre.org/data/definitions/98.html
https://cwe.mitre.org/data/definitions/692.html

tions are CWEs 15, 73 (its child 114), 98, 134, 183, 184, 185
(and its children 186 and 625), 428, 472, 565, and 913.

Analyzing the digraph, we see that the pillar CWE-
707 reflects neutralization of malformed messages; it is quite
broad. It is the parent of several CWEs that are not strictly
input/output check related.

The digraph helped us identify seven distinct clusters of
CWEs with parent CWEs 20, 22, 41, 74, 116, 138, and 228.

Most CWEs are about input check. CWEs-116 and its
children, CWEs 117 and 644, are about output check. CWEs
80, 81, 82, 83, 84, 85, 86, and 87 are about both input check
and output check.

In Fig. 4, the outline color of a CWE node indicates the
BF class(es) and operation(s) associated with that CWE: DVL
Validate, DVL Sanitize, DVR Verify, and DVL Validate and
DVR Verify. There are no CWEs that relate to DVR Correct.
The CWE-20 cluster is the only one that corresponds to DVR
Verify. However, some of its descendants correspond also to
DVL Validate. The CWE-41 and CWE-228 (except 3 nodes)
clusters correspond to DVL Validate. The rest of the clusters,
CWE-22, CWE-74, CWE-116, and CWE-138, correspond to
DVL Sanitize.

The digraph on Fig. 5 illustrates how the CWEs map to
BF DVL and DVR by consequence (Table V and Table VI).

In Fig. 5, the outline color of a CWE node indicates
the BF class consequence associated with that CWE: Query
Injection, Command Injection, Source Code Injection, Pa-
rameter Injection, File Injection, Invalid Data, Wrong Value,
Inconsistent Value, or Wrong Type.

The CWE-74 cluster is all about injection; the largest
group there is Source Code Injection, then are Query Injection
and Command Injection, and a few nodes of File Injection
and Parameter Injection. CWEs 74, 75, 76, 913, 914 are
not colored, as they are about general injection errors. The
CWE-22 and CWE-41 clusters are all about File Injection.
The CWE-138 cluster is mostly about Parameter Injection
and some Source Code Injection. Some of the CWE-138
nodes correspond to the DVL Invalid Data for Next Operation
consequence. The CWE-20 cluster (which is DVR related)
has nodes corresponding to the DVR Wrong Data for Next
Operation consequences; however, some of these CWEs
describe only causes and do not list consequences.

All relationships to input, output, and injection CWEs
(Fig. 5) by BF DVL and BF DVR consequences are as
follows:

1) The DVL class relates to CWESs through its Wrong Data
for Next Operation consequence as follows:
o Invalid Data — CWEs: 138, 153, 155, 158, 159, 160,
162, and 164.
2) The DVL class relates to CWEs also through its Injec-
tion Error consequences as follows 2:
e Query Injection — CWEs: 89, 90, 91, 564, 643, 652,
and 943;
o Command Injection — CWEs: 77, 78, and 624;
o Source Code Injection — CWEs: 79, 80, 81, 83, 82,
85, 86, 87, 94, 95, 96, 97, 98, 149, 692, 917, and
1336;

2Some injection-related CWEs are not too specific and may end up as
Invalid Data for an operation of a next weakness.

o Parameter Injection — CWEs: 88, 93, 113, 134, 140,
141, 142, 143, 144, 145, 146, 147, 148, 150, 151, 152,
154, and 157;

« File Injection — CWEs: 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
58, 73, 99, 117, 641, and 1236.

3) The DVR class relates to CWESs through its Wrong Data
for Next Operation consequence as follows:

« Wrong Value — CWEs: 129, 170, 606, 781, 1285, and
1289;

o Inconsistent Value — CWEs: 130, 230, 232, and 1288;

o Wrong Type — CWEs: 1284, and 1287.

4) The following CWEs reflect only DVL or DVR causes:
102, 105, 106, 108, 109, 183, 184, 185, 186, 228, 229,
231, 233, 234, 235, 236, 237, 238, 239, 240, 554, 625,
1173, and 1174.

The BF Data Check Bugs classes present a taxonomy
with structured cause—consequence relations that is complete
and orthogonal. It could be viewed as a structured extension
over the CWEs related to Injection Errors, Invalid Data,
Wrong Value, Inconsistent Value, and Wrong Type (Fig. 5). It
is a taxonomy that explains the causal relationships between
weaknesses and would be easier to use than the nested
hierarchical CWEs.

Many bug reporting tools use the CWE [5] to de-
scribe found bugs/weaknesses [13]. As a structured extension
over the input, output, and injection CWEs, the BF Data
Check taxonomy can be used to report found data check
bugs/weaknesses (including those leading to injection errors).
Fig. 4 shows how input/output and injection CWEs translate
to BF DVL and BF DVR by operation; Fig. 5 shows how
they translate by consequences.

VI. SHOWCASES

In this section, we use the new BF Data Check Bugs
classes for precise descriptions of real-world software vulner-
abilities. We also provide the real-world fixes of each bug.

A. CVE-2020-5902 — BIG-IP TMUI RCE

This vulnerability is listed in CVE-2020-5902. It was
one of the top routinely exploited vulnerabilities in 2020 [14].
It was identified by Mikhail Klyuchnikov [15].

1) Brief Description: BIG-IP is a family of server-side
products from F5 Inc. focused on availability, performance,
and security. In several versions, its Traffic Management
Interface (TMUI), known as the BIG-IP Configuration utility,
allows Remote Code Execution (RCE).

2) Analysis: TMUI of BIG-IP accepts /. .;/ via the
login interface /tmui/login. jsp. However, the Apache
Tomcat treats /..;/ as /../, which is a relative path
for going one directory up. This allows a malicious user to
bypass authentication, save and open files, and run arbitrary
commands on the host. Fig. 6 presents the BF taxonomy for
this vulnerability.

3) The Fix: To fix the bug, input validation (e.g., via
the 7. »\.\.; .x” regular expression) should be added to
reject any /. .; / elements [16].

https://cwe.mitre.org/data/definitions/15.html
https://cwe.mitre.org/data/definitions/73.html
https://cwe.mitre.org/data/definitions/114.html
https://cwe.mitre.org/data/definitions/98.html
https://cwe.mitre.org/data/definitions/134.html
https://cwe.mitre.org/data/definitions/183.html
https://cwe.mitre.org/data/definitions/184.html
https://cwe.mitre.org/data/definitions/185.html
https://cwe.mitre.org/data/definitions/186.html
https://cwe.mitre.org/data/definitions/625.html
https://cwe.mitre.org/data/definitions/428.html
https://cwe.mitre.org/data/definitions/472.html
https://cwe.mitre.org/data/definitions/565.html
https://cwe.mitre.org/data/definitions/913.html
https://cwe.mitre.org/data/definitions/707.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/41.html
https://cwe.mitre.org/data/definitions/74.html
https://cwe.mitre.org/data/definitions/116.html
https://cwe.mitre.org/data/definitions/138.html
https://cwe.mitre.org/data/definitions/228.html
https://cwe.mitre.org/data/definitions/116.html
https://cwe.mitre.org/data/definitions/117.html
https://cwe.mitre.org/data/definitions/644.html
https://cwe.mitre.org/data/definitions/80.html
https://cwe.mitre.org/data/definitions/81.html
https://cwe.mitre.org/data/definitions/82.html
https://cwe.mitre.org/data/definitions/83.html
https://cwe.mitre.org/data/definitions/84.html
https://cwe.mitre.org/data/definitions/85.html
https://cwe.mitre.org/data/definitions/86.html
https://cwe.mitre.org/data/definitions/87.html
https://cwe.mitre.org/data/definitions/CWE-20.html
https://cwe.mitre.org/data/definitions/CWE-41.html
https://cwe.mitre.org/data/definitions/CWE-228.html
https://cwe.mitre.org/data/definitions/CWE-22.html
https://cwe.mitre.org/data/definitions/CWE-74.html
https://cwe.mitre.org/data/definitions/CWE-116.html
https://cwe.mitre.org/data/definitions/CWE-138.html
https://cwe.mitre.org/data/definitions/74.html
https://cwe.mitre.org/data/definitions/74.html
https://cwe.mitre.org/data/definitions/75.html
https://cwe.mitre.org/data/definitions/76.html
https://cwe.mitre.org/data/definitions/913.html
https://cwe.mitre.org/data/definitions/914.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/41.html
https://cwe.mitre.org/data/definitions/138.html
https://cwe.mitre.org/data/definitions/138.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/138.html
https://cwe.mitre.org/data/definitions/153.html
https://cwe.mitre.org/data/definitions/155.html
https://cwe.mitre.org/data/definitions/158.html
https://cwe.mitre.org/data/definitions/159.html
https://cwe.mitre.org/data/definitions/160.html
https://cwe.mitre.org/data/definitions/162.html
https://cwe.mitre.org/data/definitions/164.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/90.html
https://cwe.mitre.org/data/definitions/91.html
https://cwe.mitre.org/data/definitions/564.html
https://cwe.mitre.org/data/definitions/643.html
https://cwe.mitre.org/data/definitions/652.html
https://cwe.mitre.org/data/definitions/943.html
https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/624.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/80.html
https://cwe.mitre.org/data/definitions/81.html
https://cwe.mitre.org/data/definitions/83.html
https://cwe.mitre.org/data/definitions/82.html
https://cwe.mitre.org/data/definitions/85.html
https://cwe.mitre.org/data/definitions/86.html
https://cwe.mitre.org/data/definitions/87.html
https://cwe.mitre.org/data/definitions/94.html
https://cwe.mitre.org/data/definitions/95.html
https://cwe.mitre.org/data/definitions/96.html
https://cwe.mitre.org/data/definitions/97.html
https://cwe.mitre.org/data/definitions/98.html
https://cwe.mitre.org/data/definitions/149.html
https://cwe.mitre.org/data/definitions/692.html
https://cwe.mitre.org/data/definitions/917.html
https://cwe.mitre.org/data/definitions/1336.html
https://cwe.mitre.org/data/definitions/88.html
https://cwe.mitre.org/data/definitions/93.html
https://cwe.mitre.org/data/definitions/113.html
https://cwe.mitre.org/data/definitions/134.html
https://cwe.mitre.org/data/definitions/140.html
https://cwe.mitre.org/data/definitions/141.html
https://cwe.mitre.org/data/definitions/142.html
https://cwe.mitre.org/data/definitions/143.html
https://cwe.mitre.org/data/definitions/144.html
https://cwe.mitre.org/data/definitions/145.html
https://cwe.mitre.org/data/definitions/146.html
https://cwe.mitre.org/data/definitions/147.html
https://cwe.mitre.org/data/definitions/148.html
https://cwe.mitre.org/data/definitions/150.html
https://cwe.mitre.org/data/definitions/151.html
https://cwe.mitre.org/data/definitions/152.html
https://cwe.mitre.org/data/definitions/154.html
https://cwe.mitre.org/data/definitions/157.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/23.html
https://cwe.mitre.org/data/definitions/24.html
https://cwe.mitre.org/data/definitions/25.html
https://cwe.mitre.org/data/definitions/26.html
https://cwe.mitre.org/data/definitions/27.html
https://cwe.mitre.org/data/definitions/28.html
https://cwe.mitre.org/data/definitions/29.html
https://cwe.mitre.org/data/definitions/30.html
https://cwe.mitre.org/data/definitions/31.html
https://cwe.mitre.org/data/definitions/32.html
https://cwe.mitre.org/data/definitions/33.html
https://cwe.mitre.org/data/definitions/34.html
https://cwe.mitre.org/data/definitions/35.html
https://cwe.mitre.org/data/definitions/36.html
https://cwe.mitre.org/data/definitions/37.html
https://cwe.mitre.org/data/definitions/38.html
https://cwe.mitre.org/data/definitions/39.html
https://cwe.mitre.org/data/definitions/40.html
https://cwe.mitre.org/data/definitions/41.html
https://cwe.mitre.org/data/definitions/42.html
https://cwe.mitre.org/data/definitions/43.html
https://cwe.mitre.org/data/definitions/44.html
https://cwe.mitre.org/data/definitions/45.html
https://cwe.mitre.org/data/definitions/46.html
https://cwe.mitre.org/data/definitions/47.html
https://cwe.mitre.org/data/definitions/48.html
https://cwe.mitre.org/data/definitions/49.html
https://cwe.mitre.org/data/definitions/50.html
https://cwe.mitre.org/data/definitions/51.html
https://cwe.mitre.org/data/definitions/52.html
https://cwe.mitre.org/data/definitions/53.html
https://cwe.mitre.org/data/definitions/54.html
https://cwe.mitre.org/data/definitions/55.html
https://cwe.mitre.org/data/definitions/56.html
https://cwe.mitre.org/data/definitions/57.html
https://cwe.mitre.org/data/definitions/58.html
https://cwe.mitre.org/data/definitions/73.html
https://cwe.mitre.org/data/definitions/99.html
https://cwe.mitre.org/data/definitions/117.html
https://cwe.mitre.org/data/definitions/641.html
https://cwe.mitre.org/data/definitions/1236.html
https://cwe.mitre.org/data/definitions/129.html
https://cwe.mitre.org/data/definitions/170.html
https://cwe.mitre.org/data/definitions/606.html
https://cwe.mitre.org/data/definitions/781.html
https://cwe.mitre.org/data/definitions/1285.html
https://cwe.mitre.org/data/definitions/1289.html
https://cwe.mitre.org/data/definitions/130.html
https://cwe.mitre.org/data/definitions/230.html
https://cwe.mitre.org/data/definitions/232.html
https://cwe.mitre.org/data/definitions/1288.html
https://cwe.mitre.org/data/definitions/1284.html
https://cwe.mitre.org/data/definitions/1287.html
https://cwe.mitre.org/data/definitions/102.html
https://cwe.mitre.org/data/definitions/105.html
https://cwe.mitre.org/data/definitions/106.html
https://cwe.mitre.org/data/definitions/108.html
https://cwe.mitre.org/data/definitions/109.html
https://cwe.mitre.org/data/definitions/183.html
https://cwe.mitre.org/data/definitions/184.html
https://cwe.mitre.org/data/definitions/185.html
https://cwe.mitre.org/data/definitions/186.html
https://cwe.mitre.org/data/definitions/228.html
https://cwe.mitre.org/data/definitions/229.html
https://cwe.mitre.org/data/definitions/231.html
https://cwe.mitre.org/data/definitions/233.html
https://cwe.mitre.org/data/definitions/234.html
https://cwe.mitre.org/data/definitions/235.html
https://cwe.mitre.org/data/definitions/236.html
https://cwe.mitre.org/data/definitions/237.html
https://cwe.mitre.org/data/definitions/238.html
https://cwe.mitre.org/data/definitions/239.html
https://cwe.mitre.org/data/definitions/240.html
https://cwe.mitre.org/data/definitions/554.html
https://cwe.mitre.org/data/definitions/625.html
https://cwe.mitre.org/data/definitions/1173.html
https://cwe.mitre.org/data/definitions/1174.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5902

Cause DVL Operation Consequence
Improper Operation: Injection Error:
File Injection

(Path Traversal)
Attributes
Operation Data
Mechanism: Source Code: | Execution State:
* Format * Codebase Space: ¢ Transferred
(e.g., via“.*\.\.;.*“ | (login.jsp) [* Admin (via network)
regular expression)

Fig. 6: BF for CVE-2020-5902 — BIG-IP TMUI RCE

B. CVE-2019-10748 — Sequelize SQL Injection

This vulnerability is listed in CVE-2019-10748. It was
discovered by the Snyk Security Team [17]. The source code
could be found at [18].

1) Brief Description: Sequelize is an Object-Relational
Mapper for Node. js. It supports Postgres, MySQL, Mari-
aDB, SQLite, and Microsoft SQL Server; it facilitates trans-
action support, relations, and lazy loading [19]. In several
versions query—-generator. js allows SQL injection.

2) Analysis: User input path is not sanitized for
MySQL/MariaDB syntax in a JSON (JavaScript Object No-
tation) object. Fig. 7 presents the BF taxonomy for this
vulnerability.

3) The Fix: To fix the bug, the developers check the
input paths syntax and sanitize it.

Cause DVL Operation Consequence
Improper Operation: Injection Error:

Missing Query Injection

(SQL Injection)

Attributes
Operation Data
Mechanism: | Source Code: Execution State:
* Format * Codebase Space: ¢ Transferred
(query-generator.ijs) * Local (via network)

Fig. 7: BF for CVE-2019-10748 — Sequelize SQL Injection

C. CVE-2014-0160 — Heartbleed Buffer Overflow

This vulnerability is listed in CVE-2014-0160 and dis-
cussed in [20]. The source code could be found at [21].

Heartbleed is partially described in [9] using the BF
MAD (Memory Addressing Bugs) and the BF MUS (Memory
Use Bugs) classes. Here we complete the BF taxonomy for
Heartbleed by describing the DVR bug that starts the chain
of weaknesses leading to buffer overflow.

1) Brief Description: Heartbleed is a vulnerability due
to a bug in the OpenSSL that allows a server to read over the
bounds of a buffer. Using the heartbeat extension tests in TLS
(Transport Layer Security) and DTLS (Datagram Transport
Layer Security) protocols, a user can send a heartbeat request
to a server. The request contains a string and a payload
unsigned integer, which value is expected to be the string
size but could be as big as 65535.

2) Analysis: Detailed analysis is provided in [9]. Fig. 8
presents the BF taxonomy for the Heartbeat DVR bug.

3) The Fix: To fix the bug, the OpenSSL team added a
value verification for the array size [22].

Cause DVR Operation Consequence
Improper Data:
Missing Inconsistent Value
(size)
Attributes
Operation Data
Mechanism:| Source Code: Execution | State:
* Quantity | ¢« Codebase Space: * Transferred
(d1 both.c and tl lib.c) | * Admin | (via network)

Fig. 8: BF DRV bug from DVR-MAD-(MUS & MUS) chain
of CVE-2014-0160 — Heartbleed Buffer Overflow in [9]

VII. RELATED WORKS

In this work, we introduce BF’s new classes for data
validation and data verification bugs. They can be used to
describe input data check bugs that lead to injection errors or
to improper (e.g., inconsistent) data that would cause other
software errors (e.g., buffer overflow).

Several authors attempted to create successful tax-
onomies of bugs/weaknesses that lead to security failures.
Hui et al reviewed those taxonomies in [23]. Data validation
(usually called parameter or input validation) is a common
category across the different taxonomies reviewed by them.
The new BF Data Check Bugs taxonomy differs from any of
these taxonomies as it allows describing how a security failure
emerges from a bug by a chain of weaknesses. For a bug to
exist, there should be a particular cause leading to a particular
consequence. In BF, the kinds of causes relate either to
improper operations or to improper operands. The cause
of one weakness could be the consequence of a previous
weakness. This chain of weaknesses eventually ends in a
software error that leads to a security failure. This approach
clearly explains, for example, that the well-known Heartbleed
vulnerability starts with a Data Verification Bug, which leads
to memory-related weaknesses, ending in a buffer overflow
error. Using any of the reviewed taxonomies, it would not
be possible to describe and understand the interrelationship
between weaknesses nor how the failure (e.g., exposure of
sensitive information in Heartbleed) emerges.

Ray and Ligatti [12] formally define what they call
code injection on output (CIAO). The reasoning behind their
definition is that injection errors happen when untrusted input
propagates unmodified to output. The CIAO definition is
equivalent to the union of our definitions of query injection,
command injection, and source code injection. All, except
some source code injections, are related to unchecked sym-
bols that propagate from input to output.

Ray and Ligatti also define code interference attacks
on outputs (CIntAO). The reasoning behind their CAIntO
definition is analogous to the reasoning for our Parameter
Injection definition — maliciously inserted data causes an
unexpected behavior that leads to a security failure.

In some sources (e.g., [4], [24], [25]), the term “code
injection” is used to describe an RCE failure, caused for
example, by buffer overflow. Although this kind of security
failure is not caused by source code injection (as we have
defined it), for some buffer overflow errors a data verification
bug may be the first bug in the chain leading to that error
(see Section VI-C). Using BF to describe such a vulnerabil-
ity would help clearly separate source code injection from
buffer overflow that leads to arbitrary code execution. This

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-5902
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-10748
https://cve.mitre.org/cgi-bin/cvename.cgi?name= CVE-2019-10748
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160

exemplifies how BF can help avoid confusion in vulnerability
descriptions and improve communication about bugs, weak-
nesses, and the security failures caused by them.

Currently, several institutions provide lists of security
bugs/weaknesses [5], [26]-[28]. From these, we recognize
the MITRE CWE as the most widely known and used one.
We discuss in Section V how BF extends the CWE exhaustive
list approach, as well as how to map CWE:s to BF classes and
extend the CWE based bug reports with BF descriptions.

VIII. CONCLUSION

In this paper, we introduce two new BF classes: Data
Validation Bugs (DVL) and Data Verification Bugs (DVR).
We present their operations, possible causes, consequences,
attributes, and sites. We show how they cover all CWEs
related to input/output validation, verification, as well as to
injection. We analyze particular input data check and injection
vulnerabilities and provide their precise BF descriptions. The
BF structured taxonomies show the initial error in code
(the bug), providing a quite concise and still far more clear
description than the unstructured explanations in current
repositories, advisories, and publications. The BF Data Check
Bugs taxonomy can be used by bug reporting tools, as it is
a structured extension over the input, output, and injection-
related CWEs [5]. To our knowledge there is no other bug
taxonomy that allows precise causal descriptions of data
validation and data verification bugs/weaknesses.

Future work should identify and describe more CVEs re-
lated to data validation and data verification bugs/weaknesses,
evaluating the BF Data Check Bugs taxonomy for usability. In
such an evaluation, a machine learning algorithm or multiple
analysts would classify and describe newly reported bugs
[29], while helping improve BF’s taxonomy by fine-tuning
the classes.

The CWE digraphs by BF class consequences should be
deeply analyzed. Generation of digraphs with CWEs related
to particular software errors (e.g., injection errors), detecting
corresponding clusters, and understanding their relationships
would create a comprehensive view of the CWE model
for researchers and practitioners. In turn, comparing and
contrasting the CWE’s exhaustive list of weaknesses with all
the possible consequence-cause transitions to other BF classes
would improve BF as a tool for describing CVEs.

We will continue developing orthogonal BF classes that
cover and extend the CWE weakness types.

REFERENCES

[1] C. E. Galhardo, P. Mell, I. Bojanova, and A. Gueye, ‘“Measurements
of the Most SignificantSoftware Security Weaknesses,” in Proc. AC-
SAC ’20: Annual Computer Security Applications Conference, 2020,
pp. 154-164. DOI: 10.1145/3427228.3427257.

A. Gueye, C. E. Galhardo, 1. Bojanova, and P. Mell, “A Decade of
Reoccurring Software Weaknesses,” IEEE Security & Privacy, in press,
2021. por: 10.1109/MSEC.2021.3082757.

Z. Su and G. Wassermann, “The Essence of Command Injection
Attacks in Web Applications,” in Conf. Record of the 33rd ACM
SIGPLAN-SIGACT Symp. on Principles of Programming Languages,
vol. 41, 2006, pp. 372-382. por: 10.1145/1111037.1111070.

A. Francillon and C. Castelluccia, “Code Injection Attacks on Harvard-
architecture Devices,” in Proc. 15th ACM Conf. Computer and Com-
mun. Security, 2008, pp. 15-26. por: 10.1145/1455770.1455775.
MITRE, Common Weakness Enumeration (CWE), Accessed: 2021-08-
28, 2021. [Online]. Available: https://cwe.mitre.org.

[2]

[3]

10

(6]
(71
(8]
[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

——, Common Vulnerabilities and Exposures (CVE), Accessed: 2021-
08-28, 2020. [Online]. Available: https://cve.mitre.org/.

NVD, National Vulnerability Database (NVD), Accessed: 2021-08-28,
2021. [Online]. Available: https://nvd.nist.gov.

The Bugs Framework, 2020. [Online]. Available: https://samate.nist.
gov/BF/.

I. Bojanova and C. E. Galhardo, “Classifying Memory Bugs Using
Bugs Framework Approach,” in 2021 [EEE 45nd Annu. Computer,
Software, and Applications Conf. (COMPSAC), 2021, in press.
CheatSheets Series Team, Input Validation Cheat Sheet, Accessed:
2021-08-28, 2017. [Online]. Available: https://cheatsheetseries.owasp.
org/cheatsheets/Input_Validation_Cheat_Sheet.html.

W. L. Fithen, Ensure that Input Is Properly Canonicalized, Accessed:
2021-08-28, 2013. [Online]. Available: https://us - cert. cisa.gov/
bsi / articles / knowledge / coding - practices / ensure - input - properly -
canonicalized.

D. Ray and J. Ligatti, “Defining Code-injection Attacks,” in Proc.
of the 39th Annu. ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages, vol. 47, 2012, pp. 179-190. po1: 10.1145/
2103656.2103678.

SAMATE Team, Static Analysis Tool Exposition (SATE), Accessed:
2021-08-28, 2021. [Online]. Available: https://www.nist.gov/itl/ssd/
software-quality- group/samate/static-analysis-tool-exposition-sate.
CISA, ACSC, NCSC, and FBI, Top Routinely Exploited Vulnerabilities,
Product ID:AA21-209A, 2021. [Online]. Available: https://us-cert.cisa.
gov/sites/default/files/publications/ AA21-209A_Joint_CSA%20Top%
20Routinely %20Exploited %20 Vulnerabilities.pdf.

M. Klyuchnikov, Remote Code Execution in F5 Big-IP, Accessed:
2021-08-28, 2020. [Online]. Available: https://swarm.ptsecurity.com/
rce-in-f5-big-ip/.

RIFT: Research and Intelligence Fusion Team, RIFT: F5 Networks
K52145254: TMUI RCE vulnerability CVE-2020-5902 Intelligence,
Accessed: 2021-08-28, 2020. [Online]. Available: https://research .
nccgroup.com/2020/07/05/rift- f5 - networks - k52145254 - tmui - rce -
vulnerability-cve-2020-5902-intelligence/.

Snyk Security Team, SQL Injection, Accessed: 2021-08-28, 2019.
[Online]. Available: https://snyk.io/vuln/SNYK-JS- SEQUELIZE -
450221.

Sequelize Team, Sequelize ORM, Accessed: 2021-08-28, 2019. [On-
line]. Available: https:// github.com/sequelize / sequelize / commit /
a72a3f5.

, Sequelize ORM, Accessed: 2021-08-28, 2019. [Online]. Avail-
able: https://sequelize.org/.

Synopsys Inc, The heartbleed bug, Accessed: 2021-08-28, 2014. [On-
line]. Available: https://heartbleed.com/.

Open SLL Team, OpenSSL, Accessed: 2021-08-28, 2014. [Online].
Available: https://git.openssl.org/gitweb/?p=openssl. git;a=blob;f=
ssl/d1_both.c;h=0a84f957118afa9804451add380eca4719a9765¢;hb=
4817504d069b4c5082161b02a22116ad75f822b1.

OpenSSL Team, OpenSSL, Accessed: 2021-08-28, 2014. [Online].
Available: https : / / github . com / openssl / openssl / commit /
96db9023b881d7cd9f379b0c154650d6c108e9a3.

Z. Hui, S. Huang, Z. Ren, and Y. Yao, “Review of Software Security
Defects Taxonomy,” in Int. Conf. Rough Sets and Knowledge Technol-
ogy, 2010, pp. 310-321.

L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal War in
Memory,” in Proc. 2013 IEEE Symp. Security and Privacy, 2013,
pp. 48-62. por: 10.1109/SP.2013.13.

D. Mitropoulos and D. Spinellis, “Fatal Injection: a Survey of Modern
Code Injection Attack Countermeasures,” PeerJ Comput. Sci., vol. 3,
el36, 2017. por: 10.7717/peerj-cs.136.

OWASP, OWASP Top Ten, Accessed: 2021-08-28, 2017. [Online].
Available: https://owasp.org/www-project-top-ten/.

NSA/CAS, “NSA/CAS Static Analysis Tool Study - Methodology,”
Center for Assured Software National Security Agency, Tech. Rep.,
2011. [Online]. Available: https :// www . nist . gov / system / files /
documents/2021/03/24/CAS %5C %202012 %20Static % 20Analysis %
20Too0l%20Study%20Methodology.pdf.

R. C. Seacord, The CERT C Coding Standard: 98 Rules for Developing
Safe, Reliable, and Secure Systems. Addison-Wesley, 2014.

T. M. Adhikari and Y. Wu, “Classifying software vulnerabilities by
using the bugs framework,” in 8th Inter. Symp. Digital Forensics and
Security (ISDFS), 2020, pp. 1-6. DoI: 10.1109/ISDFS49300.2020.
9116209.

https://doi.org/10.1145/3427228.3427257
https://doi.org/10.1109/MSEC.2021.3082757
https://doi.org/10.1145/1111037.1111070
https://doi.org/10.1145/1455770.1455775
https://cwe.mitre.org
https://cve.mitre.org/
https://nvd.nist.gov
https://samate.nist.gov/BF/
https://samate.nist.gov/BF/
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://us-cert.cisa.gov/bsi/articles/knowledge/coding-practices/ensure-input-properly-canonicalized
https://us-cert.cisa.gov/bsi/articles/knowledge/coding-practices/ensure-input-properly-canonicalized
https://us-cert.cisa.gov/bsi/articles/knowledge/coding-practices/ensure-input-properly-canonicalized
https://doi.org/10.1145/2103656.2103678
https://doi.org/10.1145/2103656.2103678
https://www.nist.gov/itl/ssd/software-quality-group/samate/static-analysis-tool-exposition-sate
https://www.nist.gov/itl/ssd/software-quality-group/samate/static-analysis-tool-exposition-sate
https://us-cert.cisa.gov/sites/default/files/publications/AA21-209A_Joint_CSA%20Top%20Routinely%20Exploited%20Vulnerabilities.pdf
https://us-cert.cisa.gov/sites/default/files/publications/AA21-209A_Joint_CSA%20Top%20Routinely%20Exploited%20Vulnerabilities.pdf
https://us-cert.cisa.gov/sites/default/files/publications/AA21-209A_Joint_CSA%20Top%20Routinely%20Exploited%20Vulnerabilities.pdf
https://swarm.ptsecurity.com/rce-in-f5-big-ip/
https://swarm.ptsecurity.com/rce-in-f5-big-ip/
https://research.nccgroup.com/2020/07/05/rift-f5-networks-k52145254-tmui-rce-vulnerability-cve-2020-5902-intelligence/
https://research.nccgroup.com/2020/07/05/rift-f5-networks-k52145254-tmui-rce-vulnerability-cve-2020-5902-intelligence/
https://research.nccgroup.com/2020/07/05/rift-f5-networks-k52145254-tmui-rce-vulnerability-cve-2020-5902-intelligence/
https://snyk.io/vuln/SNYK-JS-SEQUELIZE-450221
https://snyk.io/vuln/SNYK-JS-SEQUELIZE-450221
https://github.com/sequelize/sequelize/commit/a72a3f5
https://github.com/sequelize/sequelize/commit/a72a3f5
https://sequelize.org/
https://heartbleed.com/
https://git.openssl.org/gitweb/?p=openssl.git;a=blob;f=ssl/d1_both.c;h=0a84f957118afa9804451add380eca4719a9765e;hb=4817504d069b4c5082161b02a22116ad75f822b1
https://git.openssl.org/gitweb/?p=openssl.git;a=blob;f=ssl/d1_both.c;h=0a84f957118afa9804451add380eca4719a9765e;hb=4817504d069b4c5082161b02a22116ad75f822b1
https://git.openssl.org/gitweb/?p=openssl.git;a=blob;f=ssl/d1_both.c;h=0a84f957118afa9804451add380eca4719a9765e;hb=4817504d069b4c5082161b02a22116ad75f822b1
https://github.com/openssl/openssl/commit/96db9023b881d7cd9f379b0c154650d6c108e9a3
https://github.com/openssl/openssl/commit/96db9023b881d7cd9f379b0c154650d6c108e9a3
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.7717/peerj-cs.136
https://owasp.org/www-project-top-ten/
https://www.nist.gov/system/files/documents/2021/03/24/CAS%5C%202012%20Static%20Analysis%20Tool%20Study%20Methodology.pdf
https://www.nist.gov/system/files/documents/2021/03/24/CAS%5C%202012%20Static%20Analysis%20Tool%20Study%20Methodology.pdf
https://www.nist.gov/system/files/documents/2021/03/24/CAS%5C%202012%20Static%20Analysis%20Tool%20Study%20Methodology.pdf
https://doi.org/10.1109/ISDFS49300.2020.9116209
https://doi.org/10.1109/ISDFS49300.2020.9116209

	Introduction
	BF Approach and Methodology
	Data Check Bugs Model
	 BF Data Check Bugs Classes
	Operations
	Causes
	Consequences
	Attributes
	Sites

	BF Data Check Bugs Taxonomy as CWE Extension
	Showcases
	CVE-2020-5902 – BIG-IP TMUI RCE
	Brief Description
	Analysis
	The Fix

	CVE-2019-10748 – Sequelize SQL Injection
	Brief Description
	Analysis
	The Fix

	CVE-2014-0160 – Heartbleed Buffer Overflow
	Brief Description
	Analysis
	The Fix

	Related Works
	Conclusion

